
regression in the population

preliminaries

The CEF minimises $E[u_i^2]$

Some algebraic facts

Minimisation problem

The LRM minimises $E[(e_i + u_i)^2]$

Some algebraic facts

Minimisation problem

regression in the population

preliminaries

We start with a set of ordered pairs {⟨X , Y ⟩, ⟨X , Y ⟩, ⟨X , Y ⟩, ...}. X  are vectors of real

numbers, Y  are real numbers. Neither are random variables.

The CEF minimises E[u ]

Some algebraic facts

We write the equality:

Y = f (X ) + u

Where Y  and X  are known, but u  is "unknown" in the sense that it is a function of f .

Minimisation problem

Suppose we want to solve

E[u ] ↔ E[(Y − f (X )) ]
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The solution is f (X ) = E[Y ∣ X ]. Suppose we specify f (X ) as such, we then get:

Y = E[Y ∣ X ] + u

Now f  is known and u  is known (by the subtraction u = Y − E[Y ∣ X ]).

The LRM minimises E[(e + u ) ]

Some algebraic facts

Now we write the following equality:

E[Y ∣ X ] = βX + e

This says that E[Y ∣ X ] is equal to a linear function of X  plus some number e .

We then have

As before u  is known, whereas e  is a function of β .

Minimisation problem

Suppose we want to solve

E[(e + u ) ] ↔ E[(Y − βX ) ]

The solution is such that β  is equal to the vector of linear least squares regression coefficients. I

won't do the math for the fully general case (multiple regression), but only for univariate

regression. It is:
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Suppose we specify that β  is equal to these solution values. Now that β  is known (for the

univariate case, now that β  and β  are known), e  is known too (by the subtraction 

e = E[Y ∣ X ] − βX ). As before u  is known.

Thus, in our regression equation,

Y = β + β X + e + u

all of Y , X , β , β , e  and u  are known.
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