- regression in the population
 - · preliminaries
 - The CEF minimises \$E[u_i^2]\$
 - Some algebraic facts
 - Minimisation problem
 - The LRM minimises \$E[(e_i + u_i)^2]\$
 - · Some algebraic facts
 - Minimisation problem

regression in the population

preliminaries

We start with a set of ordered pairs $\{\langle X_1,Y_1\rangle,\langle X_2,Y_2\rangle,\langle X_3,Y_3\rangle,...\}$. X_i are vectors of real numbers, Y_i are real numbers. Neither are random variables.

The CEF minimises $E[u_i^2]$

Some algebraic facts

We write the equality:

$$Y_i = f(X_i) + u_i$$

Where Y_i and X_i are known, but u_i is "unknown" in the sense that it is a function of f.

Minimisation problem

Suppose we want to solve

$$\min_{f(X_i)} E[u_i^2] \leftrightarrow \min_{f(X_i)} E[(Y_i - f(X_i))^2]$$

The solution is $f(X_i) = E[Y_i \mid X_i]$. Suppose we specify $f(X_i)$ as such, we then get:

$$Y_i = E[Y_i \mid X_i] + u_i$$

Now f is known and u_i is known (by the subtraction $u_i = Y_i - E[Y_i \mid X_i]$).

The LRM minimises $E[(e_i+u_i)^2]$

Some algebraic facts

Now we write the following equality:

$$E[Y_i \mid X_i] = \beta X_i + e_i$$

This says that $E[Y_i \mid X_i]$ is equal to a linear function of X_i plus some number e_i .

We then have

$$Y_i = E[Y_i \mid X_i] + u_i$$

= $\beta X_i + e_i + u_i$

As before u_i is known, whereas e_i is a function of β .

Minimisation problem

Suppose we want to solve

$$\min_{eta} E[(e_i + u_i)^2] \leftrightarrow \min_{eta} E[(Y_i - eta X_i)^2]$$

The solution is such that β is equal to the vector of linear least squares regression coefficients. I won't do the math for the fully general case (multiple regression), but only for univariate regression. It is:

$$egin{aligned} Y_i &= eta_0 + eta_1 X_i + e_i + u_i \ &\min_{eta} E[(e_i + u_i)^2] \leftrightarrow \ &\min_{eta} E[(Y_i - eta_0 + eta_1 X_i)^2] \leftrightarrow \ η_0 &= E[Y_i] - eta_1 E[X_i] ext{ and } eta_1 = rac{cov(Y_i, X_i)}{var(X_i)} \end{aligned}$$

Suppose we specify that β is equal to these solution values. Now that β is known (for the univariate case, now that β_0 and β_1 are known), e_i is known too (by the subtraction $e_i=E[Y_i\mid X_i]-\beta X_i$). As before u_i is known.

Thus, in our regression equation,

$$Y_i = \beta_0 + \beta_1 X_i + e_i + u_i$$

all of Y_i , X_i , β_0 , β_1 , e_i and u_i are known.